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Thls paper describes a procedure based on the steepest descent method for
solving the problem of the optimum returning to the origin of a control sys-
tem.

4, We shall conslder the control system described by the linear vector
differential equation dr
where x represents an n-dimensional vector of the phase coordinates of
the controlled object, and u 1is a scalar function describing the control

signal.

The problem of the optimum control u°(¢) which in a given time 7 brings
the system (1.1) from the state x, to the state x(7) with the requirement

that the quantity T
T (@) = max max.|u(x)], 0 [u(r)|dr} = min  @=const) (12)
is a minimum, can be considered as follows [1].
Find the numbers [;({ ==1,...,n) and the system A of intervals
[Te¢s Tes:] on [0,7] for which N
min maxa S |Z Ly (1) l'dr =7 (1.3)
A i=1

is satisfied with the condition
n .
. 1
Shee=1,  p(A)= mln[F, T]

i=l1
where

hi(v)y = X fij (—T)b; (i=1...n0)  (c=—m)
=

The f,,(t) are the elements of the fundamentsl matrix F(¢) of the homo-
geneous system (1.1); u(a) is the overall length of the system of intervals

[Tk; Tk+1]-
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Once (1.3) has been solved, the optimum control u°{r) is determined by
Equations n
u° (1) = —i—signz Iohs () for TEA° w(t)=0 tor TEN (1.4)
i=1
where [;° (i=1,...,n) and a° are solutions of (1.3)

We shall assume that the system (1.1) is fully controllable [2]. The quan-

tity n . 1
o(l) = maxAR ) L (r)]dr, pA)=min[5, 7] (1)
A i=1
is positive for all li (i =1,...,n), which satisfy the condition
L2024+ 12 >0, In the domain {1,} this quantity possesses the

properties of a norm. Therefore, in order to find a minimum of (1.3), we
can search for 7,° and A° by using the steepest descent method with respect
to 1, .

2. In order to apply the steepest descent method to (1.3), it is neces-
sary to compute the derivatives 3p/31, of p(1) . We shall calculate them,
taking into consideration that the fuctions h, (r) which enter Equation (1.3)
are very smooth. Let ¢,# O for definiteness. Then, p(1) can be formula-

m

p ()= maxs { |3 ligs (@) + gu () [dr  (m=n—1) 2.1)
A i=

where g, (1), g,(r) are known expressions of h,(r). We shall consider the
case for which u(a) = 3/6 < T, since the derivatives 3p/3l, have the form

ted as

T m
j—li = & g (7) Sign<2 Lig; () + gn(r)) dv  (i=1,... m) (2.2)
0 =1

when A = [0,7] and the descent of (1) with respect to 1, does not present
any singularities. 1In (2.1), maxA is obtalned for the system of intervals
[Tk, ’I',I;,H] (k = 1, e e s §— 1), loca-
. //j ted in the domain of the largest values
{ of the function

w(, 1) =|g(t, )]
g m (2.3)
g(v, I) =2 Ligi () + ga ()
I i=1
T

ﬂlt TN T, T, 1T 7T On the ends of the Intervals «+ = 7,

\\ / which do not colncide with + = 0 or

| \_/ T = T , the function (2.3) takes the

Fig. 1 equal values

w (T, ) =€ ()

Let the numbers ], be chosen in a certain manner, and a system of inter-
vals A(1) be found for these values, such that 1t guarantees max, in (2.1).
To define the problem, let us assume that « = O 1s not one of the points .,
but that =+t = T 1s the polnt =+, . Then we have the case shown on Flg. 1 .

First, let us assume that a change aly of 1, changes the values T, but
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does not yleld new roots r, of Equation

w(t, ) =e () (2.4
In that case, the changes Ap and Ae are described exactly, up to their
higher order terms, by Equations

Ap = Al S g (v, l)sign g (v, ) dv (2.5)
Al
< g (vsigng (v, 1) s 1
AL D T, A® ® 2 Tl I,
k=1
(see Fig.2 on which wtn 0 = g;" (7, l) and Ali° = Alig; () sign g (1, 1)).

The symbol g* in (2.6) means that the summation is made along all r,
which do not coilncide with the ends of the inter-
val [0,7]. Equation (2.6) proceeds from the con-

=0 (2.6)

o

-7}l dition u(s) = 1/6 = const . On the basis of
(2.5) and (2.6) we get the following expressions
AE::: y, for the partial derivatives:
dp % .
, o = i (v, Dsigng(x, )dr 2.7
whesaly! o, = | &i(v, signeg(r, ) (2.7)
y A
_ T "
J At e E g; (ty) sign g (v, ! / 2
Flg. 2 ar; Mg (% Dloes, | Mg, (r, Dezzy |

Let us now consider the case in which Equation (2.4%) gets new roots Ty
for arbitrarily small Al,. That case can occur only when the largest values
of the function p(7,1) are on the line ¢ = ¢(1) . PFirst, let this occur
for T,= 0, or r,= T , whereupon g.' (1,1)=0, Tt =1 or T= 1T,

In such a case, if the condition

Ae < Alig; (t;) sign g (v, 1) =1 o j=s) (2.8)
is fulfilled, then additional terms of the form
Alg; (v;) sign g (v;, 1) Ae
e (@ DT, Te- (v Dl |
appear in Equation (2.6).

=1 o j=5) (29)

We shall note that if terms of the form (2.9) are considered in (2.6),
is indispensable to take into consideration the difference between the right
and left values of the derivatilves

det /[ dl;, 0e” [ Ol;

Let us now suppose that the largest value of the function w(r,l) is found
on the line w = ¢(1) for r= 1, where ¢, is a point inside the interval fo,71.
We shall assume furthermore that [g.” (1;, /)] =0, since the contrary would
be an exceptional and not likely case. Then, terms of the form

8 (Alg; (T;, 1) sign g (v}, I)—Ae)\ "z
(— Hrmar )

(2.10)
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appear in Equation (2.6) with the condition that the positiveness of the radi-
cand follows from (2.6), (where Al® = Alig; (v) sign g (v, ) (Pig.3)).
Here again the difference between the right and the left derivatives must be
taken into consideration. Terms of the form
(2.10) are also found in (2.6) when 1; =0
get=————= = ’—‘—H\\ or ;=T and g/ (1,) =0 for T =r1,.
\ However, in that case, the factor 8 under
\ the radical in the left-hand side of (2.10)
is replaced by a factor 2. The values of
the derivatives 3p/3l; and the considera-
tion of the remarks we made, determine the

/
w(t,l+4 l}/
/
w(t, 1)

b o ———— =

|
|
¢
|
|
!
|
i

method to be used for the solution of prob-
lem (1.3), and also the problem of the opti-
mum control by the system (1.1). Thus, as
long as the largest values of the function
w(r,1) are sufficiently distant from the line 4 = ¢(1), the steepest descent
of the quantity p(z) determined by (2.1) must be obtained along the direc-
tions n o,

= 9p -
Al’—_v?ﬂ—i’ Ae = VZ
i1=1

0 T T

Fig. 3

de Op
al; al;
where the derivatives

dp 1 8L, de | 9l;

are computed according to Formulas (2.7).

When values 1, , such that the largest values of the function u(r,1)
are in the neighborhood of the line p = ¢(1), are considered, one must be
aware that new roots might appear (and similarly old roots disappear). Then,
in the descent procedure, it is indispensable to bring in the corrections
determined by these circumstances, and take into consideration terms of the
form (2.9) and (2.10). Thus the steepest descent 1s determined by taking
into account that the values »e¢*/31, and 3¢~ /31, can be different,

In the cases in which the largest value of p(r,1) 1s far from the line
w=¢c(1), but n,’(1,) = 0O, one must also consider terms of the form (2.10);
however such cases are exceptional and we shall not discuss them. We should
point out that the exposed method for determining the system of intervals a
at each step of the calculation, has in the case of a numerical solution on
a digital computer the disadvantage that it leads to a cumulation of errors.
Therefore, when this method 1s used in a practical case, 1t 1is necessary,
after a certaln amount of steps, to check the conditions of conservation of
the given measure of the system of intervals A .

This drawback can be avolded by the following method of approximate cal-
culation for each fixed set of numbers I, ({ = 1,..., n) of the system a
of intervals [T,, T,,,] of the specified measure for which a maximum of
(2.1) is obtained, and which are necessary for the calculation of ap/al, in
agreement with (2.7) and also for the calculation of the quantity p(1) of
(2.1). Let us split the interval [0,7] into 7’ equal parts by the points
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* —
¥ =kAt (k=0,...,7). We shall compute w(T,*,1) = w, where the func-
tion wu(1,7) 1s determined by Equation (2.3). Let us arrange the numbers g,
in decreasing order wy, > Wk, > . . . > Wk,

The number 8 1s determined from the condition

A)
s=E ”_(_}
$ At
Then the system of intervals a 1is approximately
» » .
[Tkj’ 2% + Atl (j=1,...,5)

The value of the function (2:1) 1s determined by Equation

P (l) ~ Ax Z Wy;j
j=1

In a similar manner the quantities 3p/31, (1 = 1,..., n) are determined.
The accuracy of the computation is improved as the number 7 1increases.

The method exposed for the computation of the intervals A can be easily
set up on a digital computer.

3., Let us consider some particular problems which may be solved by the
method exposed 1n Section 1 of the present paper.

Problen 3.1 . Let u°(¢,8) be the optimum control for the problem
of Section 1. Find a value 9 = 6% of the parameter appearing in the func-
tional (1.2) such that the optimum control u°(¢,0%) satlsfy the additional

condition
max_|u’ (7, 0%)] = H
in which # 1s a glven constant number.

From the method [1] used to determine 1nax1|u°(r,9)l follows the conti-
nuous and monotonous dependence of this value on the parameter 6

It follows that the problem (3.1) can be solved if there exist two values
81 and @, of the parameter ¢ for which the condition

max_ | u® (1, 0y) [« H < max_|u° (1, 0y) |
1s fulfilled.

In that case the approximate determination of ¢%* can be, for instance,
reduced, first to the division of the segment [8,,6,] and then to the solu-
tion of the problem of Section 1 for the values of § which are found.

Problem 3.2. Often the control possibilities of the system are
limited. This means that the motor which develops a certain force, can work
only during a certian length of time. Therefore, 1t 1s Ilnterestl to deter-
mine the domain in which the initial conditions of the system (1.?% should
lie so that, from any of these points, an optimum control u°(t) could be
found such that it brings, in the time 7T , the system to the origin of the
coordinates, and gives a minimum of (1.2) with the condition that the motor
develops a force |u|<{H during the time p (A)=1/8<T. This problem
reduces to the problem: find the domain of the possible values of the vector
x, for which

n
. | 1 .
min, max S P (r)’ dv> (3.1)
with the condition A =)
n
1
Ci:_xio' 2 lici':-i, H(A):T: h(T):F(—T)B

i=1

Let us get an estimate of the sought for domain. Let us denote the left-
hand side of (3.1) by G(x) . We shall find the value of G(x) for the points
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@D (@0,...,0,z90,a...,0,...,2M0,...,a" (a>0)
We shall denote
Ga)=6 (i=1...,n), d = min {G}
The hyperplanes n
2 Lol =1 (i=1...n) (3.2)
i=1

corresponding to the polnts x! represent a n-dimensional parallelepiped in
the domain

n
II (2—15=0 (3.3)
i=1
The maxXimum distance of the points of this parallelepiped to the origin

of the coordinated 1s obviously -
p=aVn (3.4)

The distance from the hyperplanes (3.2) to the origin of the coordinates
of the space ] 1s determined by the quantity

! 4 3.5
Vet - top I=h ©-9)

Here the symbol |lx||, represents the modulus of the vector x . Let the
point x satisfy the condition

R=

1
zlly < —F= 3.6
fl ”2\aVn (3.6)
We shall prove that for the x satisfying the inequality (3.6),

G(z) >d

Let x be any arbitrary polnt, satisfying the inequality (3.6). On the
basis of (3.6), the corresponding vector ¢ will intersect some face of the
parallelepiped (3.3). Therefore this vector can be represented in the form
!l =nl" where 1 > 1, and the vector i’ ends on the edge of the parallele-

piped (3.3). Therefore n .,
Gy =n{| > li’hi(t)| dr>” S ik (7)
i=] A i=1

A
The number 4 can be modifled by the cholce of the number a. Let us

consider the number Xa ., The new value of the quantities ¢, will then be
MG, and the new value of 4 1s g .

Assuming ¢ = 1, )d = 1/y and taking (3.6) into consideration, we get
the sought estimate

dy>d

fd
e < Vi (3.7)

4, Let us consider the following illustrative examples.

Example 4.1 . Let the motlion of the control system be described
by the differentlal equations

x = Ty, 2y = —az, + Pz, zy = u (4.1)

Let us determine the control u(t¢) which brings the system (%.1) in the
time 0 <t << T to 1ts equilibrium positlion (2, = a3 = z; = 0) 1n a manner
such that the functional (1.2) has a minimum vBlue. We shall solve the prob-
lem for the following numerical values:

a = 14-10-7, B = 3-1073, T = 5360, 0 = Y44
The initial position of the system (4.1) 1s given by
7o = 374073, =z =0, 74 =0 (4.2)

The fundamental solution matrix of the homogeneous system (4.1) has the
form
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— g sin at cos at absin at
_ 0 0 1
Here a= Va=11710"% b=p/a=219 The function k (V) (i = 1,2, 3)
have the form
Re(t) =b(1—cosat), hy(1)=-—absinatr, h(1)=1 4.4

cosat alginat b{1~cosat)
Fl)= ( ) 4.3)

The numbers g, are given by
¢ = — 371078, ¢y = 0, ey == 0 (49)
In agreement with Section 1 of the present paper, the sought control
u® (¢) is gilven by the solubion of the problem
min, max , S | b (1 — cos av) — Labsinat 4 Iy |dv =7 (4.6)
A
with the condition
llcl + 1202 + 1303 = 1. mes A == 134

The solution of the problem (4.6) calculated on a digital computer
«Ypax = 2» {Ural -~ 2) by the method of steepest descent was in agreement with
the result of the Section 2 of the present paper. The following results
were obtalned:

T = 7930, 110 == —27, 120 == 1.03, l3° == 59
The system of intervals A° was determined by
{0,34], {26486, 2713], [5326, 5360}

Thus, the optimum control u° (1) found on the basis of (1.4) is defined by
u® (1) = 0.126 10~3sign cos et for T on A°, uw’ (1) =0 for T outsideA® (4.7)

a graphical representation of the optimum control (4.7) is shown on Fig.h.

Iet us note also that we could consider
by this method, the problem of the plane

(2144 motion correction of a material point on
a near-circular orbit in an equatorial
plane [3], 1f the problem 18 considered
in its linear approximation., For an un-

2 bounded increase in 8 , the solution of
7 Y the problem is similar to the impulsive

" control analogous to that considered in
It [3]. It must be mentioned however, that
" unlike in [3], the problem has been con=
" sidered only in 1ts linear approximation.

¥
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012610
=3 Example 4.2 . ILet it now be
805103, ‘ required to find, in the functional (1.2)
" Hilad a value of 8 such that the optimum con-
v {IR ra trol of Example (4,1) satisfies the com-
plementary condition
max, | u{¥)|= 5-107% {4.8)
Fig. 4 In agreement with Section 3 of the pre-

sent paper, the problem (4.6) was solved
for the following values of the parame-~
ter 6 ¢ 6§ = 403, 348, 335. Thus the following values were found for the

numbers /v
§/7 == 4.23-10-3, 4.87 1073, 5.05-10~%
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The value of the parameter ¢ , for which the condition (4.8) was satis-
fied, was found to be
0* =338.

The optimum control 1n that case is determlned by the expresslons

u® (1) = 5-107® sign cos at for T on A°, u® (1) = 0 for T outside A® (4.9)

thus the system of intervals A° 1s determined as
[0, 84], [2595, 2764], [5275, 5360}

The graph of the control function (4.9) which was found is shown by a
dotted line on Fig.h4
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